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TRANSMISSION PROBABILITY METHOD APPLIED TO 
LAMINATED VUGGY POROUS MEDIA 

 
by 

Mike Smith 
 
 
Introduction 
 
The Transmission Probability Method (TPM) is a “back to basics” computational 
technique within the LVPM program that provides a more detailed and more accurate 
description of the propagation of neutrons and gamma rays in porous media.  TPM can 
interrelate pore size, pore shape, and laminae bed thicknesses with the mixing rules of all 
neutron macroscopic scattering and absorption cross sections; and the gamma ray mass 
attenuation coefficients, mass energy coefficients, and linear attenuation coefficients.  
Ultimately, using various logging tool proxy models, the LVPM program provides 
mixing rules for various formation physical parameters including porosity, capture cross 
section, bulk density, and Pe. 
 
TPM converts the original experimental nuclear cross section data taken in various 
laboratories using (generally) thin, homogeneous samples with no pores - in both 
transmission and scattering geometries - into a form more useful for computing the 
response of nuclear logging tools in thick formations having pore systems with finite 
sizes.  TPM also provides a definite, well-defined method for converting basic tool 
responses and shop calibrations recorded in media with/without pores into ones more 
suitable for logging real earth formations with finite pore sizes. 
 
TPM does this by converting macroscopic cross sections and linear attenuation 
coefficients for homogeneous media into their corresponding values for heterogeneous 
media.  TPM is not meant to imply that the wellbore geometry is a transmission geometry 
for the various nuclear logging tools (or that neutrons and gamma rays travel only as 
plane waves in the borehole-formation region).   
 
 
Historical Perspectives 
 
The original forward models SNUPAR and MSTAR from Schlumberger and Halliburton 
used nuclear cross section data bases to compute macroscopic absorption and scattering 
cross sections at various neutron energies and then applied these cross sections in their 
proxy models to obtain the response of neutron logging tools to formations composed of 
virtually any minerals and any fluids and also to help delineate departure curves within 
their chart books.  Proxy models were calibrated using both limited experimental data and 
Monte Carlo calculations. 
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Doctor Neutron has extended the content and scope of these forward models in several 
very significant ways.  These models used linear mixing rules to compute the 
macroscopic cross sections.  Doctor Neutron demonstrated that linear mixing rules imply 
infinitesimal pore sizes.  He then developed expressions for macroscopic cross sections 
for finite pore sizes with non-linear mixing rules and also extended the original scope of 
the forward models to include gamma ray mass and linear attenuation coefficients for a 
very wide range of gamma energies.  Finally, Doctor Neutron extended the scope of TPM 
to handle laminated porous media. 
 
The original forward models and those recently developed by Doctor Neutron have never 
assumed transmission geometries in their proxy models.  The Transmission Probability 
Method simply develops new expressions for the macroscopic neutron scattering and 
absorption cross sections and gamma linear attenuation coefficients in order to describe 
heterogeneous porous media.  For both the older and newer software, these cross sections 
and attenuation coefficients are used to drive the logging tools’ proxies.  Several 
unexpected results from this process have been the introduction of non-linear mixing 
rules for many quantities of physical interest, as well as pore size and pore shape effects 
and laminated bed thickness effects beyond what might be expected from classic bed 
thickness weighting. 
 
 
Transmission Probability Method Details for a Single Vuggy Porous Medium 
 
This method is applied here to the familiar thermal neutron capture(absorption) cross 
section in a vuggy porous formation, one that has a fairly straightforward pore geometry.  
Similar considerations apply to the linear attenuation coefficient for the gamma rays.  In 
the larger context, the LVPM program (Laminated Vuggy Porous Media) applies this 
method to all the neutron and gamma processes at all energies for a pair of laminated 
vuggy porous media. 
  
Assume that the pore system is clumped into inclusions of average volume ][ 3cmV  and 
associated linear dimension ][cmλ  so that 
 

    3λ=V        (1) 
 
If the average porosity of the formation is φ , then each pore is associated on average 
with a formation volume  V (i.e. Rock + fluid) given by 
 
    V φ/V=       (2) 
 
V also has an associated linear dimension L[cm] such that 
 
    V = L 3        (3) 
 
Note that 
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    L = V ( ) 3/13/1 /φV=      (4) 
and 
    L 3/1−⋅= φλ       (5) 
 
V represents the minimum volume of formation that is meaningful to consider – it 
contains on average a single pore.   It turns out that L plays a key role in the 
computerized implementation of all TPM algorithms, including those for parallel and 
perpendicular laminae.  Note that L depends on both λ  and φ ! 
 
With reference to Figure 1, consider the propagation of a beam of neutrons (or gamma 
rays) through our vuggy porous system.  From Neutron Physics by Beckurts and Wirtz, 
pp. 3-5, the macroscopic absorption cross section for thermal neutrons sigma ( Σ ) is the 
probability per unit length of absorption and so the probability of survival/transmission to 
a microscopic distance x∆ is x∆⋅Σ−1 , where x∆⋅Σ << 1.  For a macroscopic distance x 
in a homogeneous porous medium, the transmission probability is xe Σ−  and we can write 
 
    xTRANS

HOMO eP Σ−= .      (6) 
 
In fact, we could just define HOMOΣ  by the expression 
 
    xPTRANS

HOMOHOMO
/)ln(−=Σ .    (7) 

 
For any heterogeneous porous medium, we shall calculate the transmission probability 

TRANS
HETP  and then define the effective heterogeneous macroscopic cross section HETΣ  by 

the expression 
    xPTRANS

HETHET /)ln(−=Σ     (8) 
 
In order to calculate TRANS

HETP  to a macroscopic distance x in Figure 1, slice the formation 
up into (x/L) slabs of thickness L perpendicular to the neutron beam.   L is the associated 
linear dimension (4,5).  Each slab contains on average one pore in the x direction.  Each 
slab is composed of vug/pore and rock, both of whose components are assumed to be 
homogeneous and characterized by macroscopic absorption cross sections rockΣ  and vugΣ .  
It is important to understand that these cross sections imply respective porosities of 0 and 
1.  Each slab has cross sectional area to the beam S[cm 2 ] and so has volume SL and 
contains SL/V = SL( V/φ )  pores.  Since each pore has an area to the beam 3/22 V=λ , 
the pores in each slab present an area to the beam 
 
   SL =⋅⋅ 3/2)/( VVφ SL )/( 3/1Vφ⋅  = S 3/2φ    (9) 
 
Then for a single slab the transmission probabilities are  
 
  LLslab

rock
rockrock eSSSeP Σ−Σ− ⋅−=⋅−⋅= )1(/)( 3/23/2 φφ    (10) 
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and 
  SSeeP Lslab

vug
rockvug /3/2)( φλλ ⋅⋅= −Σ−Σ−  

or 
  λφ )(3/2 rockvugrock eeP Lslab

vug
Σ−Σ−Σ− ⋅⋅=      (11) 

 
(In the expressions for slab

vugP , the neutrons must penetrate both rock and vug.)  Hence, the 
total transmission probability to a depth L in the heterogeneous medium is  

)]1(1[ )(3/2 ) λφ vugvugrock eePPP L
vug

slab
rock

slab
HET

Σ−Σ−Σ− −−=+= ,  (12) 
 
since the neutrons penetrate either the rock section or the rock-vug section.  Then the 
total transmission probability to a distance x through (x/L) slabs is  
 
  LxxLxslab

HET
TRANS

HET
rockvugrock eePP /)(3/2/ )]1(1[][ λφ Σ−Σ−Σ− −−==   (13) 

 
since the neutrons must penetrate slab1 and slab2 and slab3 …and slab(x/L).  Then use 
of equation (8) yields 
 
  )]1(1ln[)/1( )(3/2 λφ rockvugeLrockHET

Σ−Σ−−−−Σ=Σ , 
 
or, using equation (5) 
 
  )]1(1ln[)/( )(3/23/1 λφλφ rockvugerockHET

Σ−Σ−−−−Σ=Σ    (14) 
 
This equation is the generalization of the mixing rule for a vuggy porous system 
at porosity φ , with absorption cross sections rockΣ  and vugΣ , and with pore size λ . 
An equation similar to (14) appears on the website doctorneutron.com.  It was first 
derived by Zakharchenko in 1967 using an entirely different approach. 
 
Equation (14) satisfies a number of important limiting conditions when used with 
equations (1-5): 
 

(1) when 0→φ ,  rockHET Σ=Σ ;    
(2) when 1→φ ,  vugHET Σ=Σ ;      (15) 
(3) when 0→V , φφ vugrockHET Σ+−Σ→Σ )1( .  

 
This last limiting condition means that the heterogeneous cross section continuously 
grades over into the homogeneous cross section as the pore volume tends to zero. 
 
Because the derivation here is symmetric in rock/vug properties, a wide variety of 2 
component mixture problems is actually supported:  (1) pores within a rock matrix; 
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(2) pebbles within a fluid bath, (3) structural clay globs within another solid matrix, and 
(4) other mineral inclusions within a rock matrix. 
 
 
Standard/Classic/Homogeneous Bed Thickness Weighting for Laminated Beds 
 
The standard/classic/homogeneous approach generally uses bed thickness 
weighting/mixing: it forms the baseline for comparison with the newer LVPM method.  
Suppose Material1 (sand) has a thickness 1∆ and Material2 (shale) has thickness 2∆ .  
The total thickness of one laminar cycle is 21 ∆+∆=∆  and so the corresponding bed 
thickness weights are 
 
   ∆∆= /11W  and ∆∆= /22W .      (16) 
 
For the neutrons, all macroscopic cross-sections for all energies and for both absorption 
and elastic scattering processes obey simple bed thickness weighting.   
 
  iii

LAM WW 2211 Σ∗+Σ∗=Σ       (17) 
 
For the gamma rays, these rules are more complex even in the homogeneous case.  
Mixing rules for the linear attenuation coefficients (LAC) at various energies are central 
to both the LVPM homogeneous and heterogeneous calculations.  For the gammas,  
tables of mass attenuation coefficients (MAC) from Hubbell and Seltzer are used and 
LAC is computed from the general relationship 
 
  MACLAC ∗= ρ ,       (18) 
 
where ρ  is bulk density.  Bed thickness weighting is applied to ρ  and MAC  as follows. 
Total Material1 and Material2 atomic weights are computed and so the bed thickness 
average atomic weight is 
 
 2211 htAtomicWeigWhtAtomicWeigWmicWeightAverageAto ∗+∗=  (19) 
 
Then the Material1 and Material2 mass fractions are 
 
 
  micWeightAverageAtohtAtomicWeigWonMassFracti /* 111 =  (20) 
and 

micWeightAverageAtohtAtomicWeigWonMassFracti /* 222 = . (21) 
 
These mass fractions are used to compute mass attenuation coefficients at all gamma 
energies.  The final gamma ray mixing rule needed for the classic/homogeneous LVPM 
computation of the linear attenuation coefficients involves the bulk density itself: 
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  2211 ρρρ ∗+∗= WWHOMO
LAM .      (22) 

 
This rule follows from a proper accounting of the masses present in the sand and shale 
laminae, assuming their materials are homogeneous with infinitesimal pore sizes. 
 
 
Transmission Probability Method for a Pair of Laminated Vuggy Porous Media 
 
The algebraic properties of (14) have been explored in some detail – it remains borderline 
tractable.  However, when transmission probabilities for laminae with two pore systems 
are developed analogous to equations (10-13), it has not been possible to obtain an 
expression for HETΣ  analogous to equation (14) in closed form.  Instead, computer 
software has been utilized to continue development of the Transmission Probability 
Method to laminae and other more complex pore geometries.  Figures 2 and 3 show the 
main geometrical features for both the parallel and perpendicular laminar cases. 
 
Note that for the case of parallel laminae, TPM assumes that the associated linear 
dimension of Material2 is less that that for Material1.  With reference to Figure 2 for the 
parallel laminae, TPM computes the transmission probability to a macroscopic distance X 
by summing the probabilities through the individual 2L type slabs, i.e. the 
neutrons/gamma rays must pass through slab1 and slab2 … and…and slab n.  However, 
at each step in each of these 2L type slabs, the neutrons/gamma rays can penetrate the 
matrix or pore of Material1 or the matrix or pore of Material2, etc.  It is the unique way 
in which TPM performs this transmission probability calculation that distinguishes it 
from the standard approach detailed above.  The exact algebraic/software details for both 
the parallel and perpendicular laminated cases are not provided at this time.  Instead, 
examples are provided comparing the results of the standard and newer LVPM 
computations.
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